Maximum Mean Discrepancy

Uri Shaham

March 4, 2024

1 Mean Embedding

1.1 Two Sasmple tests

Given two samples, $x_{1}, \ldots, x_{n} \sim P, y_{1}, \ldots, y_{m} \sim Q$ we are interested in the question whether $P=Q$. In one dimension, we can try methods like Kolmogorov Smirnov ${ }^{1}$ which estimates the densities and checks the difference. But this is problematic in high dimensions, due to the curse of dimensionality.

1.2 Mean Embedding

The idea: choose a function class \mathcal{F} and look for a function $f \in \mathcal{F}$ that can distinguish between P and Q through means

$$
D(P, Q, \mathcal{F})=\sup _{f \in \mathcal{F}} \mathbb{E}_{x \in P}[f(x)]-\mathbb{E}_{x \in Q}[f(x)]
$$

Definition 1.1 (Universal kernel). A kernel k is called universal if its corresponding $R K H S \mathcal{H}$ is dense in $\mathcal{C}(\mathcal{X})$ (i.e., if for every bounded continuous function on \mathcal{X}, there is a sequence of functions in \mathcal{H} converging to it pointwise.

For example, the RBF kernel is known to be universal.
Theorem 1.2 (Stainwart 2001, Smola et al., 2006). Let \mathcal{H} be a universal RKHS and \mathcal{F} be a unit ball in it, i.e., $\mathcal{F}=\{f \in \mathcal{H} \mid\|f\| \leq 1\}$. Then $D(P, Q, \mathcal{F})=0$ iff $P=Q$.

Proof. (informal) The direction \Leftarrow is obvious. If $P \neq Q$, there exists a continuous and bounded f, such that $\mathbb{E}_{x \in P}[f(x)]-\mathbb{E}_{x \in Q}[f(x)]=\epsilon>0$. Then since \mathcal{H} is universal, we can find $f^{*} \in \mathcal{H}$ such that $\left\|f-f^{*}\right\|_{\infty}<\frac{\epsilon}{2}$. Then

$$
\begin{aligned}
\mathbb{E}_{x \in P}\left[f^{*}(x)\right]-\mathbb{E}_{x \in Q}\left[f^{*}(x)\right] & =\mathbb{E}_{x \in P}[f(x)]-\mathbb{E}_{x \in Q}[f(x)]+\mathbb{E}_{x \in P}\left[f^{*}(x)-f(x)\right]-\mathbb{E}_{x \in Q}\left[f^{*}(x)-f(x)\right] \\
& \geq \mathbb{E}_{x \in P}[f(x)]-\mathbb{E}_{x \in Q}[f(x)]-2\left\|f-f^{*}\right\|_{\infty} \\
& >\epsilon-2 \frac{\epsilon}{2} \\
& =0
\end{aligned}
$$

Finally, we can rescale f to fit into the unit ball.

[^0]Let \mathcal{H} be a RKHS with kernel k, and let $f \in \mathcal{H}$. Recall that by the reproducing property, $f(x)=$ $\langle k(\cdot, x), f\rangle$. Then by linearity of the inner product and the fact that $\phi(x)$ is integrable,

$$
\mathbb{E}_{x \in P}[f(x)]=\mathbb{E}_{x \in P}[\langle k(\cdot, x), f\rangle]=\left\langle\mathbb{E}_{x \in P}[k(\cdot, x)], f\right\rangle
$$

Definition 1.3 (mean embedding). The mean embedding of a distribution P in an $R K H S \mathcal{H}$ with kernel k is $\mu_{P}:=\mathbb{E}_{x \in P}[k(\cdot, x)]$.

Note that similar to the reproducing property that gives $f(x)=\langle k(\cdot, x), f\rangle$, the mean embedding gives $\mathbb{E}_{x \in P}[f(x)]=\left\langle\mu_{P}, f\right\rangle$.

2 Maximum Mean Discrepancy

We are looking to distibguish between P and Q. The optimization problem is

$$
\sup _{f \in \mathcal{H},\|f\| \leq 1} \mathbb{E}_{x \sim P}[f(x)]-\mathbb{E}_{x \sim P}[f(x)]=\sup _{f \in \mathcal{H},\|f\| \leq 1}\left\langle\mu_{P}-\mu_{Q}, f\right\rangle=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{H}}^{2}
$$

Definition 2.1 (MMD). The MMD between two distributions is the distance between their mean embeddings $\operatorname{MMD}^{2}(P, Q)=\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{H}}^{2}$.
Theorem 2.2. $\operatorname{MMD}^{2}(P, Q)=\mathbb{E}_{x, x^{\prime} \sim P}\left[k\left(x, x^{\prime}\right)\right]+\mathbb{E}_{y, y^{\prime} \sim Q}\left[k\left(y, y^{\prime}\right)\right]-2 \mathbb{E}_{x \sim P} \mathbb{E}_{y \sim Q}[k(x, y)]$.
Proof.

$$
\begin{aligned}
\operatorname{MMD}^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{H}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle+\left\langle\mu_{Q}, \mu_{Q}\right\rangle-2\left\langle\mu_{P}, \mu_{Q}\right\rangle \\
& =\mathbb{E}_{x \sim P}\left[\mu_{P}(x)\right]+\mathbb{E}_{y \sim Q}\left[\mu_{Q}(y)\right]-2 \mathbb{E}_{x \sim P}\left[\mu_{Q}(x)\right] \\
& =\mathbb{E}_{x \sim P}\left[\left\langle\mu_{P}, k(\cdot, x)\right\rangle\right]+\mathbb{E}_{y \sim Q}\left[\left\langle\mu_{Q}, k(\cdot, y)\right\rangle\right]-2 \mathbb{E}_{x \sim P}\left[\left\langle\mu_{Q}, k(\cdot, x)\right\rangle\right] \\
& =\mathbb{E}_{x, x^{\prime} \sim P}\left[k\left(x, x^{\prime}\right)\right]+\mathbb{E}_{y, y^{\prime} \sim Q}\left[k\left(y, y^{\prime}\right)\right]-2 \mathbb{E}_{x \sim P} \mathbb{E}_{y \sim Q}[k(x, y)] .
\end{aligned}
$$

2.1 Empirical Estimation of MMD

We can estimate $\mathbb{E}_{x, x^{\prime} \sim P}\left[k\left(x, x^{\prime}\right)\right]$ by

$$
\frac{1}{n(n-1)} \sum_{i, j=1, i \neq j}^{n} k\left(x_{i}, x_{j}\right)
$$

This is an unbiased estimation (as average is an unbiased estimator of expectation). This gives the sample MMD, defined as

$$
\operatorname{MMD}^{2}(X, Y)=\frac{1}{n(n-1)} \sum_{i, j=1, i \neq j}^{n} k\left(x_{i}, x_{j}\right)+\frac{1}{m(m-1)} \sum_{i, j=1, i \neq j}^{m} k\left(y_{i}, y_{j}\right)-2 \frac{1}{n m} \sum_{i=1}^{n} \sum_{j=1}^{m} k\left(x_{i}, y_{j}\right)
$$

We will now use a measure concentration result by Hoeffding ${ }^{2}$ to get a convergence rate for the empirical MMD:

[^1]Theorem 2.3 (Hoeffding). Let k be a kernel with $\left|k\left(x, x^{\prime}\right)\right|<r$, and let X be a sample of size m drawn from P. Then

$$
\operatorname{Pr}\left(\left|\mathbb{E}_{x, x^{\prime} \sim P} k\left(x, x^{\prime}\right)-\frac{1}{m(m-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)\right|>\epsilon\right) \leq 2 \exp \left(-\frac{m \epsilon^{2}}{r^{2}}\right)
$$

Remark 2.4. For example, with RBF kernel we have $r=1$.
This, together with the union bound ${ }^{3}$ gives
Corollary 2.5 (MMD convergence). Let X, Y be samples of sizes m_{x}, m_{y} respectively, drawn from P, Q. Then

$$
\begin{align*}
& \operatorname{Pr}\left(\left|\operatorname{MMD}^{2}(P, Q, \mathcal{F})-\operatorname{MMD}^{2}(X, Y)\right|>\epsilon\right)> \\
& \operatorname{Pr}\left(\left|\mathbb{E}_{x, x^{\prime} \sim P} k\left(x, x^{\prime}\right)-\frac{1}{m_{x}\left(m_{x}-1\right)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)\right|>\frac{\epsilon}{3}\right)+ \\
& \operatorname{Pr}\left(\left|\mathbb{E}_{y, y^{\prime} \sim Q} k\left(x, x^{\prime}\right)-\frac{1}{m_{y}\left(m_{y}-1\right)} \sum_{i \neq j} k\left(y_{i}, y_{j}\right)\right|>\frac{\epsilon}{3}\right)+ \\
& \operatorname{Pr}\left(\left|\mathbb{E}_{x \sim P, y \sim Q} k(x, y)-\frac{1}{m_{x} m_{y}} \sum_{i, j} k\left(x_{i}, y_{j}\right)\right|>\frac{\epsilon}{3}\right)+ \\
& \leq 6 \exp \left(-\frac{m \epsilon^{2}}{9 r^{2}}\right) . \tag{1}
\end{align*}
$$

In words, we have a convergence rate exponential in $m=\min \left\{m_{x}, m_{y}\right\}$, i.e., the larger the samples are, the (exponentially) closer is the empirical MMD to the true MMD.

2.2 Applications

1. Generative models: MMD can be used as a differentiable loss term to encourage generated samples to be similar to training samples from a given distribution.
2. Statistical hypothesis testing: use MMD as a test statistic. Null hypothesis: $P=Q$. The distribution under the null can be estimated using permutations (more on this later on in this course).

2.2.1 Hilbert-Schmidt Independence Criterion (HSIC) - MMD for independence

Let P_{X}, P_{Y} be marginal distributions of a joint distribution $P_{X Y}$ over $\mathcal{X} \times \mathcal{Y}$. Let $\mu_{P_{X Y}}, \mu_{P_{X}}, \mu_{P_{Y}}$ be the corresponding mean embeddings.
Definition 2.6 (HSIC).

$$
\operatorname{HSIC}^{2}\left(P_{X Y}, P_{X}, P_{Y}\right):=\operatorname{MMD}^{2}\left(P_{X Y}, P_{X} \otimes P_{Y}\right)
$$

[^2]Let \mathcal{F} be a $R K H S$ of functions on \mathcal{X} with kernel k, and \mathcal{G} be a $R K H S$ of functions on \mathcal{Y} with kernel l. We use as a kernel

$$
\kappa\left((x, y),\left(x^{\prime}, y^{\prime}\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right) .\right.
$$

Proposition 2.7. Prove that κ is a kernel
Proof. Exercise
We get:

$$
\begin{aligned}
\operatorname{HSIC}^{2}\left(P_{X Y}, P_{X}, P_{Y}\right) & =\mathbb{E}_{(x, y),\left(x^{\prime}, y^{\prime}\right) \sim P_{X Y}}\left[\kappa\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right]\right. \\
& +\mathbb{E}_{x, x^{\prime} \sim P_{X}}\left[k\left(x, x^{\prime}\right)\right] \mathbb{E}_{y, y^{\prime} \sim P_{Y}}\left[l\left(y, y^{\prime}\right)\right] \\
& -2 \mathbb{E}_{(x, y) \sim P_{X Y}}\left[\mathbb{E}_{x \sim P_{X}}\left[k\left(x, x^{\prime}\right)\right] \mathbb{E}_{y \sim P_{Y}} l\left[\left(y, y^{\prime}\right)\right]\right]
\end{aligned}
$$

However, in empirical estimation of HSIC we ancounter an issue, as we typically have only samples $\left(x_{i}, y_{i}\right)$ from $P_{X Y}$, we don't have samples from $P_{X} \otimes P_{Y}$. To tackle this, we estimate $P_{X} \otimes P_{Y}$ using samples $\left(x_{i}, y_{j}\right)$ with $i \neq j$.

HSIC can be used to design independence tests, similar to the MMD usage in two-sample test. In addition, it can be used as a differential objective function for disentanglement models.

Homework

1. Prove proposition 2.7
2. Design an experiment to verify the empirical MMD convergence rate.

[^0]: 1 https://en.wikipedia.org/wiki/Kolmogorov\%E2\%80\%93Smirnov_test

[^1]: 2^{2} https://en.wikipedia.org/wiki/Hoeffding\%27s_inequality

[^2]: $\sqrt[3]{ }$ https://en.wikipedia.org/wiki/Boole\%27s_inequality

