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1 Mean Embedding

1.1 Two Sasmple tests

Given two samples, x1, . . . , xn ∼ P , y1, . . . , ym ∼ Q we are interested in the question whether P = Q. In
one dimension, we can try methods like Kolmogorov Smirnov1 which estimates the densities and checks
the difference. But this is problematic in high dimensions, due to the curse of dimensionality.

1.2 Mean Embedding

The idea: choose a function class F and look for a function f ∈ F that can distinguish between P and
Q through means

D(P,Q,F) = sup
f∈F

Ex∈P [f(x)]− Ex∈Q[f(x)]

Definition 1.1 (Universal kernel). A kernel k is called universal if its corresponding RKHS H is dense
in C(X ) (i.e., if for every bounded continuous function on X , there is a sequence of functions in H
converging to it pointwise.

For example, the RBF kernel is known to be universal.

Theorem 1.2 (Stainwart 2001, Smola et al., 2006). Let H be a universal RKHS and F be a unit ball
in it, i.e., F = {f ∈ H |∥f∥ ≤ 1}. Then D(P,Q,F) = 0 iff P = Q.

Proof. (informal) The direction ⇐ is obvious. If P ̸= Q, there exists a continuous and bounded f ,
such that Ex∈P [f(x)] − Ex∈Q[f(x)] = ϵ > 0. Then since H is universal, we can find f∗ ∈ H such that
∥f − f∗∥∞ < ϵ

2 . Then

Ex∈P [f
∗(x)]− Ex∈Q[f

∗(x)] = Ex∈P [f(x)]− Ex∈Q[f(x)] + Ex∈P [f
∗(x)− f(x)]− Ex∈Q[f

∗(x)− f(x)]

≥ Ex∈P [f(x)]− Ex∈Q[f(x)]− 2∥f − f∗∥∞

> ϵ− 2
ϵ

2
= 0.

Finally, we can rescale f to fit into the unit ball.

1 https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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Let H be a RKHS with kernel k, and let f ∈ H. Recall that by the reproducing property, f(x) =
⟨k(·, x), f⟩. Then by linearity of the inner product and the fact that ϕ(x) is integrable,

Ex∈P [f(x)] = Ex∈P [⟨k(·, x), f⟩] = ⟨Ex∈P [k(·, x)], f⟩ .

Definition 1.3 (mean embedding). The mean embedding of a distribution P in an RKHS H with kernel
k is µP := Ex∈P [k(·, x)].

Note that similar to the reproducing property that gives f(x) = ⟨k(·, x), f⟩, the mean embedding
gives Ex∈P [f(x)] = ⟨µP , f⟩.

2 Maximum Mean Discrepancy

We are looking to distibguish between P and Q. The optimization problem is

sup
f∈H,∥f∥≤1

Ex∼P [f(x)]− Ex∼P [f(x)] = sup
f∈H,∥f∥≤1

⟨µP − µQ, f⟩ = ∥µP − µQ∥2H.

Definition 2.1 (MMD). The MMD between two distributions is the distance between their mean em-
beddings MMD2(P,Q) = ∥µP − µQ∥2H.

Theorem 2.2. MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y

′)]− 2Ex∼PEy∼Q[k(x, y)].

Proof.

MMD2(P,Q) = ∥µP − µQ∥2H
= ⟨µP − µQ, µP − µQ⟩
= ⟨µP , µP ⟩+ ⟨µQ, µQ⟩ − 2⟨µP , µQ⟩
= Ex∼P [µP (x)] + Ey∼Q[µQ(y)]− 2Ex∼P [µQ(x)]

= Ex∼P [⟨µP , k(·, x)⟩] + Ey∼Q[⟨µQ, k(·, y)⟩]− 2Ex∼P [⟨µQ, k(·, x)⟩]
= Ex,x′∼P [k(x, x

′)] + Ey,y′∼Q[k(y, y
′)]− 2Ex∼PEy∼Q[k(x, y)].

2.1 Empirical Estimation of MMD

We can estimate Ex,x′∼P [k(x, x
′)] by

1

n(n− 1)

n∑
i,j=1,i̸=j

k(xi, xj).

This is an unbiased estimation (as average is an unbiased estimator of expectation). This gives the
sample MMD, defined as

MMD2(X,Y ) =
1

n(n− 1)

n∑
i,j=1,i̸=j

k(xi, xj) +
1

m(m− 1)

m∑
i,j=1,i̸=j

k(yi, yj)− 2
1

nm

n∑
i=1

m∑
j=1

k(xi, yj).

We will now use a measure concentration result by Hoeffding 2 to get a convergence rate for the
empirical MMD:

2https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
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Theorem 2.3 (Hoeffding). Let k be a kernel with |k(x, x′)| < r, and let X be a sample of size m drawn
from P . Then

Pr

∣∣∣∣∣∣Ex,x′∼P k(x, x′)− 1

m(m− 1)

∑
i̸=j

k(xi, xj)

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp

(
−mϵ2

r2

)
.

Remark 2.4. For example, with RBF kernel we have r = 1.

This, together with the union bound 3 gives

Corollary 2.5 (MMD convergence). Let X,Y be samples of sizes mx,my respectively, drawn from P,Q.
Then

Pr
(∣∣MMD2(P,Q,F)−MMD2(X,Y )

∣∣ > ϵ
)
>

Pr

∣∣∣∣∣∣Ex,x′∼P k(x, x′)− 1

mx(mx − 1)

∑
i ̸=j

k(xi, xj)

∣∣∣∣∣∣ > ϵ

3

+

Pr

∣∣∣∣∣∣Ey,y′∼Q k(x, x′)− 1

my(my − 1)

∑
i ̸=j

k(yi, yj)

∣∣∣∣∣∣ > ϵ

3

+

Pr

∣∣∣∣∣∣Ex∼P,y∼Q k(x, y)− 1

mxmy

∑
i,j

k(xi, yj)

∣∣∣∣∣∣ > ϵ

3

+

≤ 6 exp

(
−mϵ2

9r2

)
.

(1)

In words, we have a convergence rate exponential in m = min{mx,my}, i.e., the larger the samples are,
the (exponentially) closer is the empirical MMD to the true MMD.

2.2 Applications

1. Generative models: MMD can be used as a differentiable loss term to encourage generated samples
to be similar to training samples from a given distribution.

2. Statistical hypothesis testing: use MMD as a test statistic. Null hypothesis: P = Q. The
distribution under the null can be estimated using permutations (more on this later on in this
course).

2.2.1 Hilbert-Schmidt Independence Criterion (HSIC) - MMD for independence

Let PX , PY be marginal distributions of a joint distribution PXY over X ×Y. Let µPXY
, µPX

, µPY
be

the corresponding mean embeddings.

Definition 2.6 (HSIC).

HSIC2 (PXY , PX , PY ) := MMD2(PXY , PX ⊗ PY )

3https://en.wikipedia.org/wiki/Boole%27s_inequality
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Let F be a RKHS of functions on X with kernel k, and G be a RKHS of functions on Y with kernel
l. We use as a kernel

κ((x, y), (x′, y′) = k(x, x′)l(y, y′).

Proposition 2.7. Prove that κ is a kernel

Proof. Exercise

We get:

HSIC2 (PXY , PX , PY ) = E(x,y),(x′,y′)∼PXY
[κ((x, y), (x′, y′)]

+ Ex,x′∼PX
[k(x, x′)]Ey,y′∼PY

[l(y, y′)]

− 2E(x,y)∼PXY
[Ex∼PX

[k(x, x′)]Ey∼PY
l[(y, y′)]] .

However, in empirical estimation of HSIC we ancounter an issue, as we typically have only samples
(xi, yi) from PXY , we don’t have samples from PX ⊗ PY . To tackle this, we estimate PX ⊗ PY using
samples (xi, yj) with i ̸= j.

HSIC can be used to design independence tests, similar to the MMD usage in two-sample test. In
addition, it can be used as a differential objective function for disentanglement models.

Homework

1. Prove proposition 2.7

2. Design an experiment to verify the empirical MMD convergence rate.
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